[image: image10.wmf]
Virtual Boy( 

Programmers Manual
Compiled by: David Tucker, david.tucker@goliathindustries.com

http://www.goliathindustries.com/vb/
version: 0.52 - January 2005
Special thanks to: Bob VanderClay, Ben Hanor, Alberto Covarrubias, Amos Bieler, Frostgiant, Parasyte, and DogP for contributing info to this document.
Notes and Disclaimer: All data within this manual was collected from public domain sources or through reverse engineering.  All information is provided as is, there is no warranty either real or implied with this information, use at your own risk.  Virtual Boy(, Nintendo(, and Game Boy( are registered trademarks of Nintendo CO., LTD.  ( 1989 to 1999 by Nintendo CO., LTD; V810(, and NEC( are registered trademarks of NEC Corp; all rights are held by their respective companies.  This document and all information within ( 1999-2005 by David Tucker.

1 System Overview

1.1 Introduction

The virtual boy is a portable 3D-videogame device developed by Gunpei Yokoi (1941-1997) for Nintendo.  Featuring a 3D display capable of 384x224 resolution with 4 shades of red for each eye, and powered by a 20MHz V810 RISC CPU. Originally released in 1995 for around $200 in the US, the VB quickly fell under intense criticism from the video game Industry for being over priced and unimpressive.  Nintendo let the system flounder for only a year before pulling the plug on it, making it the only system released by Nintendo to date that was a major flop.  When the dust had settled there where 11 US/Japan titles, 3 US titles, and additional 8 titles released only in Japan.

This is a guide to hacking the Nintendo Virtual Boy. Over the past several years, with the help of many other people, I have begun reverse engineering the VB system. This is a collection of what has been discovered so far. I hope that you will be able to glean a little useful information from this document.

1.2 Equipment needed

To hack the VB for yourself you will need some specific equipment, depending on how far you want to go.  For starters, to understand the internals and code that follows you will need at least a rudimentary understanding on Assembly language, and the inner workings of a computer (memory, CPU, I/O, etc.).  In order to run the demo code you will need a PC, running windows or Linux, and an Internet connection to grab the emulator and assembler or gccVB.  And finally to 'hack' the real VB you will need some soldering equipment and patience, along with an EPROM programmer to actually test the code on the real thing.  Finally in this document I assume that you understand the difference between Binary, Integer, and Hex number systems (Base-2, Base-10, and Base16), and how to convert between them, see appendix A for details.

1.3 Hardware Overview

The VB hardware consists of:

 V810 RISC CPU clocked at 20MHz

  - Intel order architecture (little endian)

  - 5 Maskable Interrupts (Controller, Timer, Expansion Port, Com Port, Display Retrace)

  - 64KB Program Scratch Memory (true value?)
  - 96KB Display Memory

  - Up to 16MB of Cartridge ROM

  - Up to 8MB of Cartridge Ram (saved ram)

  - Up to 16MB of cartridge expansion area

 Two Reflection Technologies P4 LED Displays

  - 384x224 resolution per display

  - Four shades of red, at one time, from a pallet of 32 shades (64 or 128?)
  - Refreshes at 50.2 Hz, period is 20ms, display redraw takes 5ms per screen

  - Double buffer of video memory
 Bi-directional Link Port

  - Clock 50 KHz(20µs) fixed or 40-500KHz user pulsed

  - Hardware Interrupt

 16 bit Controller Port

  - Hardware/software read

  - Hardware Interrupt

 16 bit timer

  - 20ms/100ms clock resolution

  - Hardware Interrupt

 16Bit Stereo Sound Processor

  - 41.7KHz with 13 bit precision

  - 6 channel PCM wave generator

 Hardware Sprite engine

  - Display 2048 sprites simultaneously

  - 32 Worlds

  - Simple 'parallax' 3D support

  - Affine transforms (scale, rotate, skew)

2. Graphic Subsystem
2.1 Graphics Overview
The virtual boy uses two Reflection Technologies P4 LED Displays, arranged so that they oscillate opposite of each other. Each display consists of a vertical column of 224 red LEDs and a mirror that oscillates horizontally. As the mirror moves forward the LEDs are toggled on and off in accordance with the times set out in the Column_Table  in order to draw vertical columns of pixels on the display. There are a total of 384 columns resulting in a final image of 384x224 pixels. Since the left and right displays are 180° out of phase with each other the screens are refreshed one after the other. Each display cycles at 50.2 Hz, so the total display period is 20ms. Each display refresh takes 5ms, so 10ms of the 20ms display cycle is given over to screen redraws. However since the VB has a total of 4 screen buffers it can generate a new image for each display while it is drawing the current image on the screens. Effectively this is a double buffer system (or a quadruple buffer).

Graphics on the VB are defined using Characters (Char), Background Maps (BGMap), Objects (Obj), and World's (World).

A char is a solitary character or 'sprite'. It is an 8x8-pixel tile that defines a 4-color image. This is the basic element that all images are created from. Both the BGMap and the OBJ elements are collections of Chars.

BGMaps are a linear (full) collection, of 64x64 chars, this is useful to display large scenes like background graphics.

OBJs are a random (sparse) collection, there are a maximum of 4 OBJ collections with each collection containing several individual objects. There is room to define 1024 Chars total for all four OBJ's. Each OBJ defines a row and column offset followed by a pointer to the char to display. Each char can be aligned on odd boundaries and independently of other chars. OBJ's are ideal for smaller sprites that move a lot, tend to overlap, or are very sparse.

Worlds are collections of BGMap's and OBJ's. There are a maximum of 32 worlds, with each world containing one BGMap or One OBJ collection. Worlds are layered on top of each other so that closer worlds cover up worlds farther away, this helps create a 3D effect.

The data contained in the BGMap's or OBJ's along with the parallax info stored in each world are used to ultimately generate the final image to display on the two screens in the VB. These different images, displayed to each of the user's eyes, are what produce the stereoscopic 3D effect. There are two ways to generate the 3D information with the internal sprite engine, hardware paralax or pre-rendered bitmaps. It is also possible to generate a 3D effect through direct screen rendering as well.

Hardware paralax is the easiest (and thus, more common) method requiring only a single image for each Char, shared between the two displays. To achieve a stereoscopic effect, each char has a different horizontal position for each eye, using the parallax attribute. Positive values for parallax push the image further away from you and negative values bring it closer. This tends to generate a relatively weak 3D effect, but it uses fewer system resources. 

Image 2.1- Paralax demonstration


[image: image1.png]Left Image Right Image Combined Image

=
=





The other method, pre-rendered bitmaps, involves creating a separate image for each display. This creates 3D objects, instead of 'cardboard cut-outs' that are simply on different planes. Of course, when using this method, you can use the parallax method as well.

Finally by drawing directly to the display you can completely bypass the sprite engine altogether. This gives you the freedom to generate any size image with as much 3D information as you want. However you are forced to do all of the hard work yourself and you may be restricted by the processing power of the VB. It is also possible to combine direct screen draws with the sprite engine to get the best of both worlds. In this way you can use the sprite engine to render the GUI and direct screen draws to render the game graphics.

Table 2.1 - 3D Graphics mode comparison

	Style
	Pros 
	Cons 

	Hardware Paralax
	· Only one OBJ required per 'character'

· Takes up less room in ROM

· Easier on art department
	· 'Cardboard cut-out' effect isn't as realistic

	Pre-Rendered Bitmap
	· Richer, more realistic graphics

· Less work than direct screen draws

· Any static 3D effect is possible
	· Takes more room in ROM

· Halves available Chars, OBJs etc

· Code is more complex

	Direct screen drawing
	· Dynamic 3d Effects are possible

· No sprite limitations
	· Code is more complex

· Limited CPU power for rendering


2.2 Characters
A Char is an 8x8 pixel sprite used by OBJ's, and BGMap's on the screen. Chars have the following characteristics: 2 bits per Pixel, 4-Colors actually an index into one of 8 4-color pallets. Each char is 8x8 pixels. Each line (8 pixels) is represented in 2 bytes (16 bits), with 8 lines per char. 2 bytes*8 = 16 bytes per char. Char RAM contains 2048 (0x800) Chars, arranged into four segments in the VB's address space. Char RAM is also mirrored into the range: 0x0007 8000 - 0x0007 FFFF, allowing linear access to all 2048 (0x800) Chars at once. To access char[n] in char ram: char[n] = n*16 + 0x00078000 

Table 2.2 - Character Ram segmentation
	Address Range
	Chars

	0x0000 6000 - 0x0000 7FFF
	0 - 511 (0x000 - 0x1FF)

	0x0000 E000 - 0x0000 FFFF
	512 - 1023 (0x200 - 0x3FF)

	0x0001 6000 - 0x0001 7FFF
	1024 - 1535 (0x400 - 0x5FF)

	0x0001 E000 - 0x0001 FFFF
	1536 - 2047 (0x600 - 0x7FF)


Image 2.2 - Character layout

[image: image2.wmf]
2.3 Background Map

BGMap's are the static images on the VB Screen. BGMap's are composed of chars from char ram, one BGMap is known as a segment. A segment is a 64x64-character image (512x512 pixels) that is 4096 characters in total. While it is possible to 'move' the whole BGMap on the display it is not possible to move the individual characters relative to each other. When displaying a BGMap on a world the H parameter must be a minimum of 8 pixels high, but can be increased in increments of 1. There are a maximum of 14 segments in the BGMap region, BGMap memory is 0x0002 0000 - 0x0003 C000 maximum. With the upper bound (0x0003 C000) being variable, it's shared with the parameter table, based on the number of active BGMap's.

1 segment: 16 bits * 4096 (0x1000) = 8192 bytes (0x2000 Bytes). Each entry (16 bits) is a index to a char in char ram (0-2047) or one Cell. Segments are laid out Left to right, top to bottom.
Table 2.3 - BGMap: Arrangement of cells within a segment

1 Segment = 4096 Cell's

	Row
	
	
	
	
	
	
	

	0
	0
	1
	2
	…
	61
	62
	63

	1
	64
	65
	66
	…
	125
	126
	127

	
	
	
	
	.
	
	
	

	
	
	
	
	.
	
	
	

	
	
	
	
	.
	
	
	

	62
	4032
	4033
	4034
	…
	4045
	4046
	4047

	63
	4048
	4049
	4050
	…
	4093
	4094
	4095


There are a maximum of 14 segments in the BGMap region, BGMap memory is 0x0002 0000 - 0x0003 C000 maximum.  With the upper bound (0x0003 C000) being variable, it's shared with the parameter table, based on the number of active BGMap’s.

Table 2.4 - BGMap Cell format

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	BPLTS
	HFLP
	VFLP
	0
	BCA ( 0x000 - 0x7FF)


BPLTS[0-3]
- Pallet # for this character, using BPLT#, from VIP registers

HFLP
- Horizontal Flip

VFLP
- Vertical Flip

BCA
- Character # to display from character ram

2.4 Object
OBJ's are the 'movable' objects on the screen, like the game character. OBJ memory is 0x0003 E000 - 0x0003 FFFF (0x02000 bytes) with each OBJ using 16x4bits for a total of 0x400 possible OBJ's. There are 4 offset registers in the VIP region (SPT0 - SPT3) that break up OBJ memory into workable chunks. Therefore you can use a maximum of 4 OBJ groups at a time. The display renderer looks at the current SPT pointer and counts backwards down to the next lower SPT pointer, starting at SPT3 for the first OBJ to be displayed. For example if we had SPT3=300, and SPT2 = 200 and SPT3 is the currently selected offset, then OBJ's 300 to 200 are displayed in that order.). So to grab OBJ3, we take the OBJ Base Address (0x0003 E000) add SPT3 (0x0003 E000 + 300 = 0x0003 E300), and index from this value, back to 0x0003 E200 grabbing objects as we go. OBJ's are special in that char's can overlap each other, can be positioned on odd boundaries, and they form a sparse matrix. This is great if you want to place a few chars randomly about the screen, i.e. making bubbles or stars. 

Table 2.5 – OBJ format
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	JX
 (-0x007 - 0x17F)

	JLON
	JRON
	JP
 (-0x100 - 0x0FF)

	JY
 (-0x007 - 0x0DF)

	JPLTS
	HFLP
	VFLP
	0
	JCA
 ( 0x000 - 0x7FF)


JX
- Offset of char in X direction on Object Buffer, ranges in the negative, so a char can creep onto the screen smoothly.

JY
- Offset of char in Y direction on Object Buffer, ranges in the negative, so a char can creep onto the screen smoothly.

JP
- Parallax, True X coordinates are computed by JX-JP = True_X for the left screen, and JX+JP = True_X for the right screen.

JLON
- Enable the OBJ for the left screen.

JRON
- Enable the OBJ for the right screen.

JPLTS[0-3]
- Pallet # for this character, using JPLT#, from VIP registers.

HFLP
- Horizontal flip.

VFLP
- Vertical flip.

JCA
- Character number to display from Character Ram.

2.5 World

Worlds are a collection of OBJ's and BGMap's, that have been layered with transparences and transposed back into the screen resolution (384x224). There are a total of 32 worlds (numbered 31 to 0), but not all 32 worlds need to be used at once. Worlds are displayed back to front, starting at 31 as the farthest back, and moving forward to 0. If a world is not 'on' (LON, RON == 1) for the given screen your rendering, the world is skipped. If however the world is marked as and END world, that world and the rest are skipped. Worlds also support a few extra special effects, like sprite scaling, and rotation. As the VB renders the left and right screens it looks at the LON and RON bits respectively, to se if the world is to be displayed. Also the parallax is factored in at this time, by adding the parallax value to the GX offset for the right screen and subtracting for the left. There are 32 worlds at 16x16bits (32Bytes) for a total of 0x400 bytes. World Ram is at 0x0003 D800 - 0x0003 DBFF
Table 2.6 - World entry format
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	LON
	RON
	BGM
	SCX
	SCY
	OVR
	END
	0
	0
	BGMAP_BASE (0xD)

	GX
 ( -0xFFFF - 0x17F)

	GP
 (-0x100 - 0x0FF)

	GY
 ( -0xFFFF - 0x0DF)

	MX
 ( -0xFFFF - 0xFFF)

	MP
 (-0x100 - 0x0FF)

	MY
 ( -0xFFFF - 0xFFF)

	W
 ( 0x000 - 0xFFF)

	H
 ( 0x000 - 0xFFF)

	PARAM_BASE
 (0x000 - 0xEBF)

	OVERPLANE_CHARACTER

	WRITING FORBIDDEN

	WRITING FORBIDDEN

	WRITING FORBIDDEN

	WRITING FORBIDDEN

	WRITING FORBIDDEN


LON
- World visible on the left screen.


RON
- World visible on the right screen.

BGM
- Type of world: 0-Normal BGMap, 1-H-bias BGMap, 2-Affine, 3-OBJ.

SCX
- Number of BGMap's to combine in the X direction counted in powers of 2n, the number of BGMaps would be 00=1 BGMap, 01=2, 10=4, 11=8 BGMap's.  There can only be a maximum of 8 BGMap’s combined in total, for both the X and Y direction.

SCY
- Number of BGMap's to combine in the Y direction counted in powers of 2n, the number of BGMaps would be 00=1 BGMap, 01=2, 10=4, 11=8 BGMap's.  There can only be a maximum of 8 BGMap’s combined in total, for both the X and Y direction.

	SCX/SCY
	00
	01
	10
	11

	00
	1x1
	1x2
	1x4
	1x8

	01
	2x1
	2x2
	2x4
	invalid

	10
	4x1
	4x2
	invalid
	invalid

	11
	8x1
	invalid
	invalid
	invalid


OVR
- Turns off the display wrapping, if you retrieve a pixle from (515,32) on a single bgmap it would be retrieved from (3,32) if over was not enabled.  But with over enabled, nothing would be returned. (does this only apply to affine mode?)
END
- No more worlds to process, used to save time, if the screen is sparse.

BGMAP_BASE
- The number of the first BGMap to display, see SCX, SCY for total # of BGMap's.  Always count left to right, top to bottom, for next BGMap to display.

GX
- Screen X start position.

GY
- Screen Y start position.

GP
- Parallax offset for screen X position, true X coordinates are computed by GX-GP = True_X for the left screen, and GX+GP = True_X for the right screen.

MX
- Buffer X start position.

MY
- Buffer Y start position.

MP
- Parallax offset for Buffer X position, actually shifts the start address to be cut out, in the X direction, to make a "Window" effect.  Each eye sees a touch more on the edges than the other, make a square with your fingers and look through it with each eye in turn to see this better.

W

- Width to cut out from the buffer and past on the screen.

H

- Height to cut out from the buffer and past on the screen.  Must be a minimum of 8 pixels high, but can be increased in increments of 1 pixel. (verify this)
PARAM_BASE
- Parameter Table Base, used in H-Bias, and Affine BGMap's, for shifting/scaling.  The last 4 bits of the PARAM_BASE must be zero.  True_base = (Param_Base && 0xFFF0) * 2 + 0x0002 0000.

OVERPLANE_CHARACTER - Used in Affine BGMap's for rotation.  (more info needed)
2.5.1 BGM: Normal Mode
Cut an image from the BGMap(s) starting at (MX +/-MP, MY) with a width and height of W ∧ H, and paste that image starting at (GX +/-GP, GY) onto the display image. The first BGMap is computed by taking the offset to BGMap memory (0x0002 0000) and adding BGMAP_BASE * 0x2000 (the size of one BGMap). To build the list of BGMap(s) to display, index through SCX and SCY grabbing the next BGMap in the list starting with the first BGMap as computed above.
2.5.2 BGM: Object Mode

Used for active characters. While displaying the worlds keep a counter of the next object group to display, counting from SPT3 to SPT0 as you display an OBJ group decrement the counter. OBJ groups ignore the MX, MY, MP, and GX, GY, GP values, and just display the whole 512x512 image starting at screen coordinates 0,0. Otherwise OBJ's are the same as normal BGMap's. You may only display a maximum of 4 OBJ's at a given time.
2.5.3 BGM: HBias Mode

This form, is used for 'wavy' effects each row on the screen can be shifted by a factor left or right, and this shifting is separate for the left and right displays. Param_Base points to the base offset of the H-Bias parameter table. A table of 2 HWORDS (2x16 bits) times the number of lines to be displayed. If the Image to display were 384x224 pixels, then the table would be 2 HWordsx224 in size. To display follow the procedures above, but when copying to the display buffer, add in the offset Hbias_L/R (-511 to 512) to the MX value, remember to use the appropriate value HBias_L, or HBias_R depending on the screen being rendered. So trueMXL = MX-MP+Hbias_L and trueMXR = MX+MP+Hbias_R. The true Param_Base is equal to (Param_Base*2) + 0x0002 0000.

Table 2.7 - H-bias Param table entry
	31
	16
	15
	0

	HBias_L
	Hbias_R


HBias_L - Horizontal offset for the left screen

HBias_R - Horizontal offset for the right screen
2.5.4 BGM: Affine Mode

This is used to display zooming and rotation effects. MX, MY, and MP are ignored in this mode, cut the BGMap from 0,0. GX, GY, GP, X, and Y are all used just like the Normal mode. The true Param_Base is equal to (Param_Base ∧∧ 0xFFF0) * 2 + 0x20000. Each line of the BGMap has an entry in the param_table. Each entry determines how that line is to be shifted, scaled, and rotated.
Table 2.8 - Affine Param table entry
	31
	0

	H_SKW (12_BIT FP)

	PRLX

	V_SCL (12_BIT FP)

	H_SCL (6_BIT FP)

	V_SCW (6_BIT FP)

	(Unknown)

	(Unknown)

	(Unknown)


H_SKW – Fixed point that defines the horizontal offset to start cutting out the image from the BGMap.  This defines both the source X offset and the horizontal skew.  Change it for each line to generate the horizontal skew. True_h_skew = (float)(h_skw/8.0)

V_SCL – Fixed point that defines the vertical offset to start cutting out the image from the BGMap.  This defines both the source Y offset and the vertical scale.  Change it for each line to generate the vertical scale. True_v_scale = (float)(v_scl/8.0)

Prlx – Parallax offset for screen X position, true X coordinates are computed by GX-GP-Prlx = True_X for the left screen, and GX+GP+Prlx = True_X for the right screen. 

H_SCL – Fixed point scale factor for horizontal direction true_h_scale = (float)(h_scl/512.0)

V_SCW – Fixed point skew factor for vertical direction true_v_skew = (float)(v_skw/512.0)
The last three entries in the param table, along with the overplain character are unknown. (more info needed)
h_skw  = dest_y * y_skew

v_scl    = dest_y * y_scale

source_x = h_skw  + dest_x * h_scl

source_y = v_scl    + dest_x * v_skw

2.6 Colors

2.6.1 Pallet/Transparency

Each OBJ and BGMap cell is associated with a 'pallet'. There are 4 possible pallets for OBJ's (JPLT0-JPLT4) and 4 pallets for BGMap's (GPLT0-GPLT4). This allows for special pallet tricks, such as 'lightning'. Each pallet is an 8 Bit number making 4 2bit pallets, each 2 bit palled corresponds to one of the 3 brightness registers (BRTA-BRTC) with a value of 00b equaling pure black. Pallet entry 0 is always transparent.
2.6.2 Background Color
The BKCOL register tells the system what color to clear the background to. Values from 0-3 are valid, 0 being black, and 1-3 corresponding to BRTA-C.
2.6.3 Brightness

The registers BRTA, BRTB, and BRTC are the 3 brightness registers, each register holds a integer between 0-80 (0-63 or 0-127, or possibly a float_13?) that defines the hardware brightness level for that color entry. BRTA and BRTB are taken at face value but the true value of BRTC is tBRTC = BRTA+BRTB+BRTC.

2.6.4 Repeat

Since the VB uses scanning mirrors to generate the display the dots do not have a fixed width, but vary in width based on there intensity. To help smooth out the dots and limit the gap between, the VB has a 'repeat' register (where) that allows a given dot to turn on multiple times within a given dot period. Repeat takes the literal brightness (BRTA-BRTC) of a given dot and repeats it the specified number of times, thus intensifying the dot by that number.

It is possible to change the repeat register once every display cycle, and also once every 4 columns of the display. By changing every 4 columns, you can give the illusion of having more colors active at a time.

For an example of using Repeat, imagine that you were setting up the BRTA register to an intensity of 40 (with Repeat set to the default 0). If you wanted to smooth out the appearance of the dot you could set the Repeat value to 3 (repeat 4 times), and the BRTA register to 10, to achieve a smother dot with an equivalent intensity.
[image: image3.png]LED timming





2.6.5 GClock

The low byte of the FRMCYC register controls the number of times to display the current screen before regenerating the display from data stored in the world tables. This is useful if you have a lot of computations to do in order to generate a screen and you can not get them all done in one display cycle. Normally this should be set to zero.
2.7 Direct Screen Draw

The VB has 4 buffers to store the display on, to perform direct screen draws we only need to write to these buffers when they are not being cleared or used for display refreshing. There are two ways to accomplish this. First we can disable screen refreshing altogether and manually control the buffers. This is what the game Water World does. Secondly we can wait for the next display refresh and draw immediately afterwards.

Since the VB uses vertical scan lines the screen memory is laid out in column-row ordering. Each column is 16 words tall with each word representing 16 pixels, using 2 bits per pixel. And there are a total of 384 columns in all.

Note*** clear bit 1 in tVIPREG.XPCTRL to disable screen refresh

Note*** bits 2&3 in tVIPREG.XPSTTS indicates the current screen buffer set being used

See red_dragon for more info
Screen Memory:

Left Frame Buffer 0 = 0x00000000

Left Frame Buffer 1 = 0x00008000

Right Frame Buffer 0 =0x00010000

Right Frame Buffer 1 = 0x00018000

2.8 Column Table

The column table helps correct for any distortions caused by an imbalance in the scanning mirrors used to make up the display. The table could be reset by the user to change the aspect ratio of the display, and to cause a certain region of the display to distort. This table must be filled in and the screen given time to stabilize (about 20 seconds) before turning on the display. Otherwise the user might suffer from eyestrain if the mirrors have not stabilized and an improper stereo image is displayed.
;----------------------------------------------------------------

lb. ColTblData

db. 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe

db. 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe

db. 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe

db. 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe

db. 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe

db. 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe

db. 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe

db. 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xe0, 0xbc

db. 0xa6, 0x96, 0x8a, 0x82, 0x7a, 0x74, 0x6e, 0x6a

db. 0x66, 0x62, 0x60, 0x5c, 0x5a, 0x58, 0x56, 0x54

db. 0x52, 0x50, 0x50, 0x4e, 0x4c, 0x4c, 0x4a, 0x4a

db. 0x48, 0x48, 0x46, 0x46, 0x46, 0x44, 0x44, 0x44

db. 0x42, 0x42, 0x42, 0x40, 0x40, 0x40, 0x40, 0x40

db. 0x3e, 0x3e, 0x3e, 0x3e, 0x3e, 0x3e, 0x3e, 0x3c

db. 0x3c, 0x3c, 0x3c, 0x3c, 0x3c, 0x3c, 0x3c, 0x3c

db. 0x3c, 0x3c, 0x3c, 0x3c, 0x3c, 0x3c, 0x3c, 0x3c

;----------------------------------------------------------------

lb. LoadColTblStart


;Write first half of column table


movhi

0x0004, $0, $3

;0x0003DC00 => $3


movea

0xDC00, $3, $3

;Start of column table


movhi

0x0004, $0, $4

;0x0003DCFF => $3


movea

0xDCFF, $4, $4

;End of column table


.mov32

ColTblData, $6

;Column Table data

lb. CTBL_Loop1


ld.b

0x00[$6], $5

;Data to write


shl

0x18, $5

;zero high bits


shr

0x18, $5


st.h

$5, 0x0000[$3]

;Column Table 1


st.h

$5, 0x0200[$3]

;Column Table 2


add

0x02, $3


add

0x01, $6


cmp

$4,$3


bge

0x0C


.jump 
CTBL_Loop1








;Write second half of column table


movhi

0x0004, $0, $3

;0x0003DDC00 => $3


movea

0xDD00, $3, $3

;Start of column table


movhi

0x0004, $0, $4

;0x0003DDCFF => $3


movea

0xDDFF, $4, $4

;End of column table


.mov32

ColTblData, $6

;Column Table data


addi

0x7F,$6,$6

lb. CTBL_Loop2


ld.b

0x00[$6], $5

;Data to write


shl

0x18, $5


shr

0x18, $5


st.h

$5, 0x0000[$3]

;Column Table 1


st.h

$5, 0x0200[$3]

;Column Table 2


add

0x02, $3


add

-1, $6


;subtract 1


cmp

$4,$3


bge

0x0C


.jump 
CTBL_Loop2



3 Memory and I/O Registers
3.1 Condensed Memory Map

The virtual boy uses 128 Mbytes of the 32bit CPU’s 4 GB addressable area. A26 ~ A24 are decoded and the 128Mbyte area is divided into 8 16-Mbyte areas.  So internally all memory addresses are masked with 0x07FF FFFF.  Only the significant bits of each memory area are decoded, so memory 'mirrors' itself within these regions.

	VIP Area: control registers, VRAM, DRAM
	0x00000000
- 0x0007FFFF

	IMAGE
	0x00080000
- 0x00FFFFFF

	Sound Area: control registers, data
	0x01000000
- 0x01FFFFFF

	Hardware Control Area: wait state, controller, com port, timer
	0x02000000
- 0x020000xx

	IMAGE
	0x020000xx
- 0x02FFFFFF

	not used
	0x03000000
- 0x03FFFFFF

	Game Pack Internal Expansion Area: unused
	0x04000000
- 0x04FFFFFF

	NVC WRAM AREA: 64Kbytes
	0x05000000
- 0x0500FFFF

	IMAGE
	0x05010000
- 0x05FFFFFF

	Game Pak RAM area: 16Mbytes max
	0x06000000
- 0x06FFFFFF

	Game Pak ROM area: 16Mbytes max
	0x07000000
- 0x07FFFFFF


3.2 Info at the end of the ROM

Mapped down from 0x07FF FFFF, remember the ROM replicates itself from 0x0700 0000 to 0x07FF xxxx, and we mask off the higher address lines, 0x07FF FFFF is the highest address possible.

ROM Info

0x07FF FDE0
- 0x07FF FDF3
Game Title

0x07FF FDF4
- 0x07FF FDF8
Reserved

0x07FF FDF9
- 0x07FF FDFA
Manufacturer Code

0x07FF FDFB
- 0x07FF FDFE
Game ID Code

0x07FF FDFF

ROM Version 1.x

Interrupt Vectors

0xFFFF FE00
- 0xFFFF FE0F
INTKEY
- Controller Interrupt

0xFFFF FE10
- 0xFFFF FE1F
INTTIM
- Timer Interrupt

0xFFFF FE20
- 0xFFFF FE2F
INTCRO
- Expansion Port Interrupt

0xFFFF FE30
- 0xFFFF FE3F
INTCOM
- Link Port Interrupt

0xFFFF FE40
- 0xFFFF FE4F
INTVPU
- Video Retrace Interrupt

0xFFFF FFF0
- 0xFFFF FFFF
Reset Vector
- This is how the ROM boots

3.3 Detailed Memory Map

0x0000 0000
- 0x0007 FFFF
Display RAM, VIP
0x7FFFF bytes

0x0000 0000
- 0x0000 5FFF
L FrameBuff0
0x6000 bytes

0x0000 6000
- 0x0000 7FFF
CHR 0-511
0x2000 bytes

0x0000 8000
- 0x0000 DFFF
L FrameBuff1
0x6000 bytes  

0x0000 E000
- 0x0000 FFFF
CHR 512-1023
0x2000 bytes

0x0001 0000
- 0x0001 5FFF
R FrameBuff0
0x6000 bytes

0x0001 6000
- 0x0001 7FFF
CHR 1024-1535
0x2000 bytes

0x0001 8000
- 0x0001 DFFF
R FrameBuff1
0x6000 bytes

0x0001 E000
- 0x0001 FFFF
CHR 1536-2047
0x2000 bytes

0x0002 0000
- 0x0003 BFFF
BG Map
0x1C000 bytes *(1)
0x0003 C000
- 0x0003 D7FF
ParamTable
0x017FF bytes

0x0003 D800
- 0x0003 DBFF
World
0x00400 bytes

0x0003 DC00
- 0x0003 DDFF
ColumbTbl1
0x00200 bytes 

0x0003 DE00
- 0x0003 DFFF
ColumbTbl2
0x00200 bytes 

0x0003 E000
- 0x0003 FFFF
Object
0x02000 bytes

0x0004 0000
- 0x0005 F7FF
VIP Mirroring
- How does this work?

0x0005 F800
- 0x0005 F870
VIP
- Only accessible in HWords

*0x0005 F800:
INTPND
- Write the current interrupt here

*0x0005 F802:
INTENB
- Check if Interrupt is enabled

*0x0005 F804:
INTCLR
- Clear the bits in int pending

*0x0005 F820:
DPSTTS
- Display Status

*0x0005 F822:
DPCTRL
- Display Control

0x0005 F824:
BRTA
- Color for the given 4 bit column 0-80 (100?)

0x0005 F826:
BRTB

0x0005 F828:
BRTC
- true_BRTC = BRTA+BRTB+BRTC
0x0005 F82A:
REST
- Counter, reset with 0x0000?

0x0005 F82E:
FRMCYC
- Repeat/G_CLK?

0x0005 F830:
CTA
- Column Table Address, R/ L (Read Only?)

*0x0005 F840:
XPSTTS

*0x0005 F842:
XPCTRL

0x0005 F844:
VER
- Static Number?

0x0005 F848:
SPT0
- Pointers to the 4 OBJ group's in OBJ memory

0x0005 F84A:
SPT1

0x0005 F84C:
SPT2

0x0005 F84E:
SPT3

0x0005 F860:
GPLT0
- Set the BGMap current color pallet

0x0005 F862:
GPLT1
- Selected by BPLTS from the BGMap Attrib Table

0x0005 F864:
GPLT2
- There are 4 ‘2bit’ pallets per GPLTx register

0x0005 F866:
GPLT3

0x0005 F868:
JPLT0
- Set the OBJ current color pallet

0x0005 F86A:
JPLT1
- Selected by JPLTS from the OBJ Attribute table.

0x0005 F86C:
JPLT2

0x0005 F86E:
JPLT3

0x0005 F870:
BKCOL
- Background Color (0-3)

0x0007 8000
- 0x0007 FFFF
CHR Data, mirrored from above (Linear) 0x8000 bytes


Serial access memory, 0x700 bytes (where?)

0x0008 0000
- 0x00FF FFFF
Mirroring of RAM, from 0x0000 0000 - 0x0007 FFFF

0x0100 0000
- 0x0100 05FF
Sound Memory

- Each data ram region has 32 6-bit registers addressed on even word boundaries,

    data mask with 0x3F

0x0100 0000
- 0x0100 007F
Sound1 Data Ram
0x20 bytes

0x0100 0080
- 0x0100 00FF
Sound2 Data Ram
0x20 bytes

0x0100 0100
- 0x0100 017F
Sound3 Data Ram
0x20 bytes

0x0100 0180
- 0x0100 01FF
Sound4 Data Ram
0x20 bytes

0x0100 0200
- 0x0100 027F
Sweep  Data Ram
0x20 bytes

0x0100 0280
- 0x0100 02FF
Modulation Data Ram
0x20 bytes

- data masked with 0xFF, all registers are 8 bit's

0x0100 0400
- 0x0100 05FF
Sound Control Registers

- Standard wave

0x0100 0400:
S1CTRL
- Sound1 Control Reg.

0x0100 0404:
S1LEN
- Length Reg.

0x0100 0408:
S1FL
- Frequency low byte

0x0100 040C:
S1FH
- Frequency high byte

0x0100 0410:
S1?L
- Unknown

0x0100 0414:
S1?H
- Unknown

0x0100 0418:
S1INST
- Instrument

- Standard wave

0x0100 0440:
S2CTRL
- Sound2 Control Reg.

0x0100 0444:
S2LEN
- Length Reg.

0x0100 0448:
S2FL
- Frequency low byte

0x0100 044C:
S2FH
- Frequency high byte

0x0100 0450:
S2?L
- Unknown

0x0100 0454:
S2?H
- Unknown

0x0100 0458:
S2INST
- Instrument

- Standard wave

0x0100 0480:
S3CTRL
- Sound3 Control Reg.

0x0100 0484:
S3LEN
- Length Reg.

0x0100 0488:
S3FL
- Frequency low byte

0x0100 048C:
S3FH
- Frequency high byte

0x0100 0490:
S3?L
- Unknown

0x0100 0494:
S3?H
- Unknown

0x0100 0498:
S3INST
- Instrument

- Standard wave

0x0100 04C0:
S4CTRL
- Sound4 Control Reg.

0x0100 04C4:
S4LEN
- Length Reg.

0x0100 04C8:
S4FL
- Frequency low byte

0x0100 04CC:
S4FH
- Frequency high byte

0x0100 04D0:
S4?L
- Unknown

0x0100 04D4:
S4?H
- Unknown

0x0100 04D8:
S4INST
- Instrument

- Sweep/Modulation

0x0100 0500:
S5CTRL
- Sound5 Control Reg.

0x0100 0504:
S5LEN
- Length Reg.

0x0100 0508:
S5FL
- Frequency low byte

0x0100 050C:
S5FH
- Frequency high byte

0x0100 0510:
S5?L
- Unknown

0x0100 0514:
S5?H
- Unknown

0x0100 0518:
S5INST
- Instrument

- Noise

0x0100 0540:
S6CTRL
- Sound6 Control Reg.

0x0100 0544:
S6LEN
- Length Reg.

0x0100 0548:
S6FL
- Frequency low byte

0x0100 054C:
S6FH
- Frequency high byte

0x0100 0550:
S6?L
- Unknown

0x0100 0554:
S6?H
- Unknown

0x0100 0558:
S6INST
- Instrument

0x0100 0580:
SMREG
- Main control register

0x0200 0000
- 0x0200 002C
HCREG (hardware control registers)


data masked with 0xFF, all registers are 8 bit's

R
W
0x0200 0000:
LPC
- Link Port Control Reg.

R
W
10000000
IntDisable
- 1-clears and disables interrupts





- 0-enables



01000000
RFU
- Unused, set to 1



00100000
RFU
- Unused, set to 1

R
W
00010000
ClockSelect
- 0-internal clock (20 MHz/





- 40-500KHz), 1-external clock



00001000
RFU
- Unused, set to 1


W
00000100
ComStart
- 1-starts communications on 





- Falling edge of clock

R

00000010
ComStatus
- 1-during communication, 0-on idle



00000001
RFU
- Unused, set to 1

R
W
0x0200 0004:
LPC2
- Link Port Control Reg.

R
W
10000000
IntDisable
- 1-clears and disables interrupts





- 0-enables



01000000
RFU
- Unused, set to 1



00100000
RFU
- Unused, set to 1

R
W
00010000
IntLevel
- ???

R
W
00001000
ControlSig
- ???

R

00000100
ControlSample
- ???

R
W
00000010
ControlWrite
- ???

R

00000001
ControlRead
- ???

- In/Out data for the timer, keypad and link port -

R
W
0x0200 0008:
LPT
- Link Port Transmit data

R

0x0200 000C:
LPR
- LinkPort Receive data

R

0x0200 0010:
KLB
- Keypad LowByte

R

0x0200 0014:
KHB
- Keypad HighByte 

R
W
0x0200 0018:
TLB
- Timer LowByte

R
W
0x0200 001C:
THB
- Timer HighByte

R
W
0x0200 0020:
TCR
- Timer Control Reg.



10000000
RFU
- Unused, set to 1



01000000
RFU
- Unused, set to 1



00100000
RFU
- Unused, set to 1

R
W
00010000
Tclock
- resolution of the clock 1-20µs





- 0-100ms (default)

R
W
00001000
TINT
- 1-enable interrupt, 0-disable


W
00000100
TClear
- 1-clear status flag

R

00000010
TStat
- 1-counted to zero, 0-disabled

R
W
00000001
TEnable
- 1-restart count, 0-disable

R
W
0x0200 0024:
WCR
- Wait States Control Register



10000000
RFU
- Unused, set to 1



01000000
RFU
- Unused, set to 1



00100000
RFU
- Unused, set to 1



00010000
RFU
- Unused, set to 1



00001000
RFU
- Unused, set to 1



00000100
RFU
- Unused, set to 1

R
W
00000010
WEXP
- 1-1 wait, 0-2 wait (default)

R
W
00000001
WROM
- 1-1 wait, 0-2 wait (default)

R
W
0x0200 0028:
KCR
- Keypad Control Reg.

R
W
10000000
IntDisable
- 1-clears and disables interrupts





- 0-enables (default)



01000000
RFU
- Unused, set to 1

R
W
00100000
DataLatch
- 1-software data latch





- 0-hardware read

R
W
00010000
Dclock
- software data clock 1,0,1…





- Software reads, 0-hardware read



00001000
RFU
- Unused, set to 1


W
00000100
KeyStart
- 1-start hardware read





- 0-idle (default)

R

00000010
KeyStatus
- 1-during communications, 0-idle

R
W
00000001
Suspend
- 1-suspend read, 0-enable (default)

0x0400 0000
0x04FF FFFF
Expansion area
0x00FF FFFF bytes max

0x0500 0000
0x0500 FFFF
Program RAM
0xFFFF bytes (mask with 0xFFFF)

0x0600 0000
0x0600 1FFF
Cartridge RAM
0x00FF FFFF bytes max

0x0700 0000
0x07FF FFFF
Cartridge ROM
0x00FF FFFF bytes max *(2)

*(1) The boundary between the BG Map and the Param Table is variable

*(2) All ROM’s must be powers of 2 in size (256k, 512, 1024, 2048 etc.)  The ROM is placed at 0x700 0000 - up but due to addressing rollover you can always read the ROM backwards from 0x07FF FFFF down, this is how the reset vector is read.

4 Hardware Interfaces
4.1 Controller

To read the Keypad, write 0x84 to the Keypad Control Reg (0x0200 0028) to start the read cycle.  Read the Keypad Control Reg (0x0200 0028) until the status bit (0x02) is zero.  Than read the Keypad HighByte (0x0200 0014) and Keypad LowByte (0x0200 0010).  Mask both with 0xFF to clear any sign extensions, and put them together.  The 16 bits correspond to the 16 buttons on the controller.  It is usually good practice to make sure the button was released before continuing on in your program.

Table 4.1 - Button Data

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	rdd
	rdl
	sel
	str
	ldu
	ldd
	ldl
	ldr
	rdr
	rdu
	lbb
	rbb
	b
	a
	1
	bat


rdx – Right DPad, where x is Up, Down, Left, Right

ldx – Left DPad, where x is Up, Down, Left, Right

sel – Select

str – Start

lbb, rbb – Left/Right Button on back of controller

bat – Battery low, may flicker so test multiple times.

;;HCREG offset defines for readability

df. HCREGR_KLB

0x00000010

df. HCREGR_KHB

0x00000014

df. HCREGR_KCR

0x00000028

; Read Keypad, and store the 16 bit result in Register $3

movhi

0x0200, $0, $4

; Pointer to Hardware Control Reg, 0x02000000 => $4

movea

0x0080, $0, $2

;0x00000080 => $2

st.b

$2, HCREGR_KCR[$4]
;Tell Controller to reset

add

0x04, $2

;0x00000084 => $2

st.b

$2, HCREGR_KCR[$4]
;Tell Controller to read

ld.b

HCREGR_KCR[$4], $2
;Read status

andi

0x0002, $2, $2

bne

-8


;Read Status until Zero

ld.b

HCREGR_KHB[$4], $2
;Read Upper Byte

shl

0x18, $2

;remove sign bit

shr

0x10, $2

;and shift left 8 bits

ld.b

HCREGR_KLB[$4], $3
;Read Lower Byte

shl

0x18, $3

;remove sign bit

shr

0x18, $3

or

$2, $3


;put them together in $3

To read data from the controller by hand drive Reset (data latch) high, then the first bit from the controller will be ready to read before the first tick of the clock.  From there drive the clock high and read a bit, repeat an additional 15 times, and end with the clock high.  Everything is latched on the rising edge, on the data latch line or the clock.  Also the bits are inverted a High value means no button was pushed.  Bit1 should always be low (a logical 1) and Bit0 is the battery status bit, it should be ignored.  The controller is powered from pin 2 even though pin6 is the power from the batteries.  It is not necessary to switch the controller on to get it to work.

Image 4.1 - Controller Connector - looking into plug on end of cable.

[image: image4.png](Brown)  (Blue)  (Yelow)
resel Gy deta

vee g ook
(Red)  (Black)  (Orange)
from

battery pack



 [image: image5.png]Controller Timming

Clock

Reset

Data

helilehllolsl |





To make an adapter to hook the controller to the parallel port of a PC wire up the controller to a male DB25 pin parallel port adapter using the following diagram.  Once the adapter is maid you can use a program like SNESKey (http://www.csc.tntech.edu/~jbyork/) to read the controller, or you can read it by hand using the above info.

Image 4.2 – Link Port to parallel port adapter

[image: image6.png]PARALLEL PORT ‘Shown looking into pad connector
L ————

oezs- 3
oezs- 7
oBzs-10

oBzs-18 —1
opzs-19 —1
opzs-20—1
opzs-21—1
o825-22—1
opzs-23—1
DBzs-24.
DB2s-25——+





4.2 Link Port

The link port is a ‘pseudo’ com port, there is a ‘clock’ line that all transmissions are synchronized on.  This clock by default is driven at 50KHz (20 µs period), and data is latched on the rising edge.  Data is transmitted/received 8 bits at a time starting with the MSB.  At the default clock rate it takes 160 µs to complete a transmission.  There is a generic control line that can be used to control the flow of communication.  Also it appears there is a Synch In/Out pair that helps the VB to synch the send and receive data to the clock.  There is a clock pull with a 20 ms period driven out of the Synch Out line at power up of the VB. The full pin out of the link port is not known at this time, here is the pin out as it stands now. (pull up the synch and ctl lines?) (fill in later)
Image 4.3 - Link Port – looking into VB port
Image 4.4 - Link Cable - untested

[image: image7.wmf] 
                 [image: image8.png]52 —o  ——(2)+5())
oain ) st
PRI N to—

Clock (3) e (3) Clock (6)

(1) (1
B (7) (D o ()

Smenn(®) 2@ syenin
Synch Out (61 (6) Synch Out




4.3 Cartridge

Image 4.4 – Cartrige overview

[image: image9.png]=
NCH
o
RAM| U1 ROM! a D
P 4 B
et ; ] S B
B S
2 - 22 (U1)

ETRETY)




Table 4.2 – Cartrige Pinout

	Cart Edge(top)
ROM
Ram
	Cart Edge(bottom)
ROM
Ram

	1 (gnd)

3

27 (WE\)

5 (/NC)

7

26 (CS2)

9  (/INTCRO)

11
2 (A18)

13
3 (A17)

15
4 (A7)
3 (A7)

17
5 (A6)
4 (A6)

19
6 (A5)
5 (A5)

21
7 (A4)
6 (A4)

23
8 (A3)
7 (A3)

25
9 (A2)
8 (A2)

27
10 (A1)
9 (A1)

29
11 (A0)
10 (A0)

31
12 (/CE)

33 (gnd)
13 (GND)

35
14 (/OE) 
22 (OE\)

37
15 (D0)
11 (D0)

39
16 (D8)

41
17 (D1)
12 (D1)

43
18 (D9)

45
19 (D2)
13 (D2)

47
20 (D10)

49
21 (D3)
15 (D3)

51
22 (D11)

53 (+5v)

55 (Rsound In)

57 (Rsound Out)

59 (gnd)
	2 (gnd)

4 (/ES)

6

20 (CS1\)

8 (+5v)

10
(A22)

12
(A21)

14
44 (A20)

16
43 (A19)

18
42 (A8) 
25 (A8)

20
41 (A9) 
24 (A9)

22
40 (A10) 
21 (A10)

24
39 (A11) 
23 (A11)

26
38 (A12) 
2 (A12)

28
37 (A13) 

30
36 (A14)

32
35 (A15)

34
34 (A16)

36 (+5v)
33 (/BYTE)

38
31 (D15)

40
30 (D7) 
19 (D7)

42
29 (D14)

44
28 (D6) 
18 (D6)

46
27 (D13)

48
26 (D5) 
17 (D5)

50
25 (D12)    

52
24 (D4) 
16 (D4)

54 (+5v)
23 (Vdd)

56 (Lsound In)

58 (Lsound Out)

60 (gnd)


ROM

Toshiba TC53x200 or equivalent mask ROM.  Can be replaced with a 27Cx00 EPROM, or 29Wx00 flash ROM, where x is 2, 4, 8, or 16.

1  - /NC

44 - /NC Used for the 32mbit ROM, this normally would be A20.

23 - +5v

33 - /BYTE (Always held high the chip is permanently in word mode)

13,32 – GND

RAM

Cypress CY6264 or equivalent SRAM.

Edge Connector 

Pin 4 – (/ES), Expansion area select, driven low when accessing memory from 0x0400 0000-0x04FF FFFF

Pin 5 – Unknown, possibly reset

Pin 9 – (/INTCRO), Expansion port interrupt, drive low to generate an interrupt.

Pin 55,56 – L/Rsound in, analog sound input to right speaker

Pin 57,58 –L/Rsound out, analog sound form onboard sound processor.  Hook pin 55 to 57 and pin 56 to 58 for normal sound operation.

Extra Pins for Installing a Flash ROM (more info needed)
9   RDY/BY\
- Output for flash ROM

10 RESET\
- Reset the flash ROM

12 WE\

- Write Enable

5 CPU

5.1 Overview

The Virtual Boy is based on NEC's V810 CPU core with the following added features.  A custom interrupt controller, a bus wait state generator, a built in timer, link port controller, and a game pad controller.  In addition the CPU core may have extra floating point opcodes as well.

The V810 CPU is based on a 32 bit RISC (Reduced Instruction Set Computer) architecture using a combination of 16-bit and 32-bit instructions to reduce the compilation size.  It has 32 general-purpose registers (r0-r31), a Program Counter (PC), and 10 system registers.  All registers are 32-bits wide, and all general-purpose registers can be used in any register operation as either data or and address register.  Register 0 (r0) is the 'zero' register, its contents are always zero.

Table 5.1 - General Purpose Register Summary

	Register
	Name
	Description

	r0
	Zero register
	Always holds zero

	r1 - r25
	-
	General purpose

	r26
	String destination bit offset
	Used in BitString instruction's

	r27
	String source bit offset
	

	r28
	String length register
	

	r29
	String destination address register
	

	r30
	String source address register
	

	r31
	Link pointer
	Stores the return address of a JAL instruction


Table 5.2 - System Register Summary

	Register
	Name
	Application
	Operation

	s0
	EIPC
	Save status registers for exception/interrupt
	Saves the PC during an exception or interrupt

	s1
	EIPSW
	Save status registers for exception/interrupt
	Saves the PSW during an exception or interrupt

	s2
	FEPC
	Save status registers for NMI/duplex exception
	Save the PC during an NMI or duplex exception

	s3
	FEPSW
	Save status registers for NMI/duplex exception
	Save the PSW during an NMI or duplex exception

	s4
	ECR
	Exception cause register
	Upper 16-bits (FECC) holds the exception code for a NMI/duplex exception, lower 16-bits (EICC) holds the code for exception/ interrupt

	s5
	PSW
	Program status word
	Flags indicating status of the CPU

	s6
	PIR
	Processor ID register
	Identifies the CPU type number, set to  0x0810x (x=unknown)

	s7
	TKCW
	Task control word
	Controls floating-point operations

	s8 - s23
	Reserved

	s24
	CHCW
	Cache control word
	Controls the on-chip instruction cache

	s25
	ADTRE
	Address trap register
	When the address in this register matches the PC value execution jumps to a predefined address.

	s26 - s31
	Reserved


The PSW (Program Status Word) is a set of flags that indicates the status of the CPU and the result of certain instruction executions.  In particular the flags CY, OV, S, and Z are used extensively by the conditional branch instructions.

Table 5.3 - PSW summary

	31
	20
	19
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	RFU
	IntLevel
	NP
	EP
	AE
	ID
	RFU
	FRO
	FIV
	FZD
	FOV
	FUD
	FPR
	CY
	OV
	S
	Z


RFU - Reserved for Future Use

Table 5.4 - PSW details

	Bit
	Name
	Description

	31-20
	RFU
	Unused fixed to 0

	19-16
	IntLevel
	Maskable interrupt level (0-15)

	15
	NP
	NMI pending, non maskable interrupt is being handled

	14
	EP
	Exception pending, exception, trap or interrupt is being handled

	13
	AE
	Address Trap Enable

	12
	ID
	Interrupt disabled, 1-disable, 0-enable

	11,10
	RFU
	Unused fixed to 0

	9
	FRO
	Floating Reserved Operand

	8
	FIV
	Floating Invalid

	7
	FZD
	Floating Zero Divide

	6
	FOV
	Floating Overflow

	5
	FUD
	Floating Underflow

	4
	FPR
	Floating Precision

	3
	CY
	Carry

	2
	OV
	Overflow

	1
	S
	Sign, result is negative

	0
	Z
	Zero, result is zero


The V810 uses a little endian addressing, that is to say the least significant byte comes first in a multi byte sequence.  The standard data types include a Byte (8-bits), HWord (16-bits), and a Word (32-bits) in both signed and unsigned form.  Words must be aligned on a word boundary, with the lower 2 bits masked to zero.  And HWords must be aligned on a HWord boundary, with the least significant bit masked to 0.  The V810 also supports BitString and 32-bit floating-point data types.  The floating-point data type conforms to the 32-bit IEEE single format.

Table 5.5 - IEEE 32-bit floating-point format

	31
	30
	23
	22
	0

	S
	exp (8)
	mantissa (23)


BitStrings are a variable length string of bits ranging from 0 to 2^32-1 bits long.  To define a BitString you must define 3 parameters:

- Address of the start of the string in memory aligned to a word boundary (last 2 bits are 0)

- Bit offset into data (0 to 31)

- Length of the string in bits (0 to 2^32 - 1)

When using BitString instructions load the appropriate data as defined above into the general purpose registers r26-r30 to define the source and destination strings, before calling a BitString opcode.

The V810 supports a full 32 bit addressing space (4-gigabytes).  The handling of I/O is flexible, supporting both 32-bit memory mapped I/O and a full 32-bit port mapped I/O, however the VB only utilizes the memory mapped I/O.  The external data buss supports both a 32-bit data mode and a 16-bit mode, but the VB only utilizes the 16-bit mode.

5.2 Instruction Summary

5.2.1 V810 Opcode Formats

Form 1  (I) - Register to Register computation, 16 bits

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	opcode
	reg2
	reg1


Form 2  (II) - Immediate to Register computation, 16 bits

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	opcode
	reg2
	Imm5


Form 3  (III) - Conditional Branch, 16 bit instruction

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	opcode
	disp9
	0


Form 4  (IV) - Medium Jump, 32 bits

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	opcode
	disp26
	0


	31
	30
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16

	disp26 (continued)


Form 5  (V) - 3 operand instruction, 32 bits

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	opcode
	reg2
	reg1


	31
	30
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16

	imm16


Form 6 (VIa/b) - load/store instruction, 32 bits

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	opcode
	reg2
	reg1


	31
	30
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16

	disp16


Form 7 (VII) - extended instruction, 32 bits (floating point/bitstring)

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	opcode
	reg2
	reg1


	31
	30
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16

	sub-opcode
	RFU


RFU - Reserved for Further Use

reg1,2
- 5 bit int referencing general purpose registers 0 to 31.

imm5
- 5 bit immediate data, sign extended to 32 bits.

Disp9
- 9 bit displacement, sign extended to 32 bits.

imm16
- 16 bit Immediate data, sign extended to 32 bits.

disp16
- 16 bit displacement, sign extended to 32 bits.

disp26
- 26 bit displacement, sign extended to 32 bits.

regID
- 5 bit int referencing system registers 0 to 31.

vector
- 5-bit address of, trap vector 0-31.

5.2.2 Opcode Summary

opcode
form
instruction
summary


- Register to Register computation

0x00
I
mov
reg1, reg2
Move
reg2 ( reg1

0x01
I
add
reg1, reg2
Add
reg2 ( reg2 + reg1

0x02
I
sub
reg1, reg2
Subtract
reg2 ( reg2 - reg1

0x03
I
cmp
reg1, reg2
Comparison
reg2 - reg1

0x04
I
shl
reg1, reg2
Logical shift left

0x05
I
shr
reg1, reg2
Logical shift right

0x06
I
jmp
[reg1]
Unconditional Branch
PC ( reg1

0x07
I
sar
reg1, reg2
Arithmetic shift right

0x08
I
mul
reg1, reg2
Signed multiplication
r30,reg2 ( reg2 * reg1

0x09
I
div
reg1, reg2
Signed division
reg2 ( reg2 / reg1

0x0A
I
mulu
reg1, reg2
Unsigned multiplication
r30,reg2 ( reg2 * reg1

0x0B
I
divu
reg1, reg2
Unsigned division
reg2 ( reg2 / reg1

0x0C
I
or
reg1, reg2
Logical OR
reg2 ( reg2 OR reg1

0x0D
I
and
reg1, reg2
Logical AND
reg2 ( reg2 AND reg1

0x0E
I
xor
reg1, reg2
Logical XOR
reg2 ( reg2 XOR reg1

0x0F
I
not
reg1, reg2
Logical NOT
reg2 ( NOT reg1

- Immediate to Register computation

0x10
II
mov
imm5, reg2
Move
reg2 ( sign32(imm5)

0x11
II
add
imm5, reg2
Add

reg2 ( reg2 + sign32(imm5)

0x12
II
setf
imm5, reg2
Test flag condition

0x13
II
cmp
imm5, reg2
Comparison
reg2 - sign32(imm5)

0x14
II
shl
imm5, reg2
Logical shift left

0x15
II
shr
imm5, reg2
Logical shift right

0x16
II
EI

- v830?

0x17
II
sar
imm5, reg2
Arithmetic shift right

0x18
II
trap
vector
Software trap
- imm5 is the vector.

0x19
II
reti

Return from Interrupt
- no reg2 or imm5 data

0x1A
II
halt

Processor stop
- no reg2 or imm5 data

0x1B
UDEF


- unknown

0x1C
II
ldsr
reg2, regID
Load system register
regID ( reg2

0x1D
II
stsr
regID, reg2
Store system register
reg2 ( regID

0x1E
II
DI

- v830?

0x1F
II
-

- Bit String Instructions, imm5 is subopcode





- see subopcode table below

- Conditional Branch, form 3 uses 7-bit opcode

- All follow the form PC ( PC + sign32(dsp9) depending on the flags

0x40
III
bv
disp9
if Overflow 
[OV = 1]

0x41
III
bl
disp9
if Lower (less than - unsigned)
[CY = 1]





  also BC - if Carry 

0x42
III
be
disp9
if Equal
[Z = 1]





  also BZ - if Zero

0x43
III
bnh
disp9
if Not higher (less than or equal - unsigned)
[(CY or Z) = 1]

0x44
III
bn
disp9
if Negative
[S = 1]

0x45
III
br
disp9
Always (unconditional branch)

0x46
III
blt
disp9
if Less than - signed
[(SX xor OV) = 1]

0x47
III
ble
disp9
if Less than or equal - signed
[((SX xor OV) or Z) = 1]

0x48
III
bnv
disp9
if Not overflow
[OV = 0]

0x49
III
bnl
disp9
if Not lower (greater than or equal - unsigned)
[CY = 0]





  also BNC - if Not carry

0x4A
III
bne
disp9
if Not Equal
[Z = 0]





  also BNZ - if Not zero

0x4B
III
bh
disp9
if Higher (greater than - unsigned)
[(CY or Z) = 0]

0x4C
III
bp
disp9
if Positive
[S = 0]

0x4D
III
nop
disp9
No Operation (do nothing for 1 cycle)

0x4E
III
bge
disp9
if Greater than or equal - signed
[(S xor OV) = 0]

0x4F
III
bgt
disp9
if Greater than - signed
[((S xor OV) or Z) = 0]

- Misc. 32 bit instructions

0x28
V
movea
imm16, reg1, reg2
Addition no flags
reg2 ( reg1 + sign32(imm16)

0x29
V
addi
imm16, reg1, reg2
Addition
reg2 ( reg1 + sign32(imm16)

0x2A
IV
jr
disp26
Jump relative
PC ( sign32(disp26) & 0xFFFF FFFE

0x2B
IV
jal
disp26
Jump and link
r31 ( PC+4, jr disp26

0x2C
V
ori
imm16, reg1, reg2
Logical OR
reg2 ( reg1 OR sign32(imm16)

0x2D
V
andi
imm16, reg1, reg2
Logical AND
reg2 (reg1 AND sign32(imm16)

0x2E
V
xori
imm16, reg1, reg2
Logical XOR
reg2 (reg1 XOR sign32(imm16)

0x2F
V
movhi
imm16, reg1, reg2
Add High
reg2 (reg1 + shl16(imm16)

0x30
VIa
ld.b
disp16[reg1], reg2
Load Byte
reg2 ( [sign32(disp16) + reg1]

0x31
VIa
ld.h
disp16[reg1], reg2
Load HWord
reg2 ( [sign32(disp16) + reg1]

0x32
UDEF


- unknown

0x33
VIa
ld.w
disp16[reg1], reg2
Load Word
reg2 ( [sign32(disp16) + reg1]

0x34
VIb
st.b
reg2, disp16[reg1]
Store Byte
[sign32(disp16) + reg1] ( reg2

0x35
VIb
st.h
reg2, disp16[reg1]
Store HWord
[sign32(disp16) + reg1] ( reg2

0x36
UDEF


- unknown

0x37
VIb
st.w
reg2, disp16[reg1]
Store Word
[sign32(disp16) + reg1] ( reg2

0x38
VIa
in.b
disp16[reg1], reg2
Inport Byte
reg2 ( [sign32(disp16) + reg1]

0x39
VIa
in.h
disp16[reg1], reg2
Inport HWord
reg2 ( [sign32(disp16) + reg1]

0x3A
VIa
caxi
disp16[reg1], reg2

0x3B
VIa
in.w
disp16[reg1], reg2
Inport Word
reg2 ( [sign32(disp16) + reg1]

0x3C
VIb
out.b
reg2, disp16[reg1]
Outport Byte
[sign32(disp16) + reg1] ( reg2

0x3D
VIb
out.h
reg2, disp16[reg1]
Outport HWord
[sign32(disp16) + reg1] ( reg2

0x3E
VII
-

- Floating Point Instructions





- see subopcode table below

0x3F
VIb
out.w
reg2, disp16[reg1]
Outport Word
[sign32(disp16) + reg1] ( reg2

All instructions greater than 0x3F are undefined.  Except for the Branch instructions witch use a 7-bit opcode instead of a 6-bit opcode.

Unless otherwise noted, all mathematical operations are signed.

5.2.3 - Bit String Subopcode Summary
Subopcode
Instruction
Summary

0x00
sch0bsu
- search up, for 0’s

0x01
sch0bsd
- search down, for 0’s

0x02
sch1bsu
- search up, for 1’s

0x03
sch1bsd
- search down, for 1’s

0x04-0x07
UDEF
- unknown

0x08
orbsu
- logical OR 2 bit strings together

0x09
andbsu
- logical AND 2 bit strings together

0x0A
xorbsu
- logical XOR 2 bit strings together

0x0B
movbsu
- copy the first string over the second

0x0C
ornbsu
- logical OR 2 bit strings together, NOTing the first

0x0D
andnbsu
- logical AND 2 bit strings together, NOTing the first

0x0E
xornbsu
- logical XOR 2 bit strings together, NOTing the first

0x0F
notbsu
- logical NOT the first bit string storing in the second

0x10-0x1F
UDEF
- unknown

5.2.4 - Floating Point Subopcode Summary
Subopcode
Instruction
Summary
Example

0x00
cmpf.s
reg1, reg2
- compare FP
reg2 - reg1

0x01
UDEF

- unknown

0x02
cvt.ws
reg1, reg2
- convert int to float
reg2 ( float( reg1 )

0x03
cvt.sw
reg1, reg2
- convert float to int
reg2 ( int( reg1 )

0x04
addf.s
reg1, reg2
- add 2 floats
reg2 ( reg2 + reg1

0x05
subf.s
reg1, reg2
- subtract 2 floats
reg2 ( reg2 - reg1

0x06
mulf.s
reg1, reg2
- multiply 2 floats
reg2 ( reg2 * reg1

0x07
divf.s
reg1, reg2
- divide 2 floats
reg2 ( reg2 / reg1

0x08
xb

- swap low bytes
reg1 ( (reg1&FFFF0000)|((reg1<<8)&FF00)|((reg1>>8)&FF)

0x09
xh

- swap half word
reg1 ( ((reg1<<16)&FFFF0000)|((reg1>>16)&FF)

0x0A
rev

- reverse  the word
reg1 ( (mirror of reg1)

0x0B
trnc.sw
reg1, reg2
- convert float to unsigned int
reg2 ( uint( reg1 )

0x0C
mpyhw

- unknown

0x0D-0x3F
UDEF

- unknown

5.3 Instruction Details

(Fill in later)
5.4 Interrupts/Exceptions

(need better description of NMI, Maskable Interrupt and Exception handling)
Interrupts are events that interrupt the execution of a program from an external source.  Interrupts are divided into maskable interrupts and non-maskable interrupts (NMI) i.e. reset.  Exceptions are events that interrupt the execution of a program that are generated by the program execution.  For example dividing a number by zero would generate a ‘Zero Division’ exception.  Otherwise interrupts and exceptions are almost identical.  But interrupts take precedence over exceptions.  The v810 handles interrupts and exceptions through an interrupt table.  When a given interrupt/exception is generated the current PC and PSW registers are saved in the EIPC/EIPSW registers.  And when a NMI or Duplexed exception is generated the PC and PSW are stored in the FEPC/FEPSW registers.  Next the exception cause register (ECR) is filled in with the interrupt/exception number, the PSW Int Level is set to 1+current interrupt level, the PSW EP and ID bits are set to 1 and the PC is updated to point to the interrupt handler vector.

In order for a maskable interrupt to occur the NP bit of the PSW must be 0, the EP bit of the PSW must be zero, the ID bit of the PSW must be zero.  And the interrupt being fired must have an id greater than or equal to the Interrupt Level stored in the PSW.

Table 5.6 - Interrupt/Exception Table

	Interrupt/Exception name
	Classification
	Code
	Handler Addr
	Restore PC

	Reset

NMI

Duplexed Exception

Address trap

Trap instruction (0x1n)

Trap instruction (0x0n)

Invalid OpCode

Divide by Zero

FIV (float invalid op)

FDZ (float zero divide)

FOV (float overflow)

FUD (float underflow)*(3)
FPR (float degradation)*(3)
FRO (float reserved op)

INT level n (n = 0 to 15)
	Interrupt

Interrupt

Exception

Exception

Exception

Exception

Exception

Exception

Exception

Exception

Exception

Exception

Exception

Exception

Interrupt
	0xFFF0

0xFFD0

*(1)

0xFFC0

0xFFBn

0xFFAn

0xFF90

0xFF80

0xFF70

0xFF68

0xFF64

0xFF62

0xFF61

0xFF60

0xFEn0
	0xFFFFFFF0

0xFFFFFFD0

0xFFFFFFD0

0xFFFFFFC0

0xFFFFFFB0

0xFFFFFFA0

0xFFFFFF90

0xFFFFFF80

0xFFFFFF60

0xFFFFFF60

0xFFFFFF60

0xFFFFFF60

0xFFFFFF60

0xFFFFFF60

0xFFFFFEn0
	undefined

next PC *(2)
current PC

current PC

next PC

next PC

current PC

current PC

current PC

current PC

current PC

current PC

current PC

current PC

next PC *(2)


*(1) Exception code of first exception is stored in the lower 16-bits of ECR and the second is stored in the upper 16-bits.

*(2) If an instruction is aborted by an interrupt (DIV/DIVU, floating-point instruction, BitString instruction) the restore PC = current PC.

*(3) The floating-point underflow and floating-point precision degradation exceptions do not occur in the v810.

The v810 is not set up to handle more than one interrupt at a time, it can handle up to 2 exceptions.  In order to support multiple interrupts at a time your interrupt code must: (verify)

- disable all further interrupts by setting the ID bit of the PSW to 1

- save the EIPC and EIPSW registers

- clear the EP bit from the PSW

- finally re-enable interrupts by setting the ID bit to 0 in the PSW

(returning from an interrupt/exception)
5.5 Reset

Power on reset causes the system registers to initialize to the following. After initialization, program execution jumps to the reset vector at 0xFFFFFFF0 and begins execution.
Table 5.7 – Power on Reset

	Register
	Description
	State

	PC
	Program Counter
	0xFFFFFFF0

	EIPC
	Status saving register for interrupt
	Undefined

	EIPSW
	
	

	FEPC
	Status saving register for NMI
	Undefined

	FEPSW
	
	

	FECC
	Interrupt cause register
	0x0000

	EICC
	
	0xFFF0

	PSW
	Program status word
	0x00008000

	r0
	General-purpose register
	Fixed to 0x00000000

	r1 to r31
	
	Undefined


�








_1160418868.bin

